

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 26 (2006) 2151-2154

www.elsevier.com/locate/jeurceramsoc

Microwave dielectric properties of the BaTi₅O₁₁ thin film grown on the poly-Si substrate using rf magnetron sputtering

Bo-Yun Jang^a, Young-Hun Jeong^a, Suk-Jin Lee^a, Sahn Nahm^{a,*}, Ho-Jung Sun^b, Woo-Sung Lee^c, Myong-Jae Yoo^c, Nam-Ki Kang^c, Hwack-Joo Lee^d

^a Department of Materials Science and Engineering, Korea University, 1-5 Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-701, Korea

^b Department of Materials Science and Engineering, Kunsan National University, Kunsan, 573-701, South Korea

° Korea Electronics Technology Institute, 455-6, Masan-ri, Jinwi-Myon, Pyungtaek-si, Kyeonggi-do 451-865, Korea

^d New Materials Evaluation Center, Korea Research Institute of Standards and Science, Daeduk Science Town, Taejon 305-600, Korea

Available online 7 November 2005

Abstract

BaTi₅O₁₁ thin films were grown on the poly-Si/SiO₂/Si substrate using rf magnetron sputtering. The BaO-TiO₂ thin film deposited on the poly-Si substrate had an amorphous phase even though the growth temperature was high at 550 °C. The amorphous film was crystallized into the BaTi₅O₁₁ phase when the film was post annealed above 800 °C. The post annealing temperature is one of the most important factors for the formation of the crystalline BaTi₅O₁₁ thin film. The homogeneous BaTi₅O₁₁ thin film was obtained when the film was grown at 550 °C and rapid thermal annealed (RTA) at 900 °C for 3 min. The dielectric constant (ε_r) of the BaTi₅O₁₁ film measured at 100 kHz was about 35 and the dissipation factors of all the films were smaller than 4.0%. The dielectric properties of the BaTi₅O₁₁ thin film were also measured at microwave frequencies. For the BaTi₅O₁₁ thin film grown at 550 °C and RTA at 900 °C for 3 min, the ε_r of 34–30 and dielectric loss of 0.025 ± 0.005 were obtained at 1–6 GHz. © 2005 Elsevier Ltd. All rights reserved.

Keywords: Films; Microstructure; Dielectric properties; BaTi₅O₁₁

1. Introduction

Microwave dielectric materials with a high ε_r , a low loss and a low temperature coefficient of the resonance frequency (τ_f) have been investigated for their application to microwave devices.^{1,2} Recently, microwave devices with a small size operating at low voltage are required to cope with the miniaturization of the monolithic microwave integrated circuit. These requirements can be achieved using thin film microwave dielectric materials. Thus, investigations on the thin film microwave dielectric materials have been increased.^{3–5}

A large number of compounds were found in the binary BaO-TiO₂ system.^{6–8} BaTiO₃ ceramic has been used in many fields because of its ferroelectric properties. BaTi₄O₉ and Ba₂Ti₉O₂₀ compounds were also extensively studied to apply them to the microwave components because of their good microwave dielectric properties.^{9,10} The BaTi₅O₁₁ phase was first obtained from a quenched melt of BaTi₄O₉.¹¹ The single

* Corresponding author. E-mail address: snahm@korea.ac.kr (S. Nahm).

0955-2219/\$ - see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.jeurceramsoc.2005.09.088 BaTi₅O₁₁ phase was not produced from the solid-state reaction but it was synthesized by the solution methods.^{12–14} All the previous works on the BaTi₅O₁₁ were concentrated on the bulk ceramics and no research has been conducted on the growth and the dielectric properties of the thin film BaTi₅O₁₁. In this work, the BaTi₅O₁₁ thin films were grown on the poly-Si/SiO₂/Si substrate using rf magnetron sputtering for future application to microwave devices, and the microstructure and the dielectric properties of the BaTi₅O₁₁ thin film at microwave frequencies were investigated.

2. Experimental details

BaTi₅O₁₁ thin films were grown on the poly-Si/SiO₂/Si substrate by the rf magnetron sputtering using a BaTi₄O₉ target with 3 in. diameter which was synthesized by the conventional solid state method. The background pressure of the system was approximately 10^{-7} Torr and the sputtering was conducted in an oxygen and argon (O₂/Ar = 1:4) atmosphere with the total pressure of 5 mTorr. The rf power was 80–140 W and the substrate temperature during the deposition ranged between room temperature and 550 °C. After the deposition, the films were subjected to a rapid thermal annealing at temperatures between 800 and $1000 \,^{\circ}$ C under O₂ atmosphere. The microstructure of the thin film was studied using X-ray diffraction (Rigaku D/max-RC, Japan), transmission electron microscopy (TEM: Hitachi H-9000NAR Ibaraki, Japan) and scanning electron microscopy (SEM: Hitach S-4300, Japan). For the measurement of the dielectric properties at low frequency, Pt electrode was sputtered on the BaTi₅O₁₁ film and LCR meter (Agilent 4285A) was used to measure the capacitance and dissipation factor of the films. For the measurement of the dielectric properties at microwave frequencies, Al was deposited on the thin film as the top electrode using conventional DC sputtering. The Al-electrode was patterned to form a circular-patch capacitor structure by photolithography. The complex reflection coefficient was measured at 1-6 GHz using a Vector Network Analyzer (HP 8710C). The dielectric constant and dissipation factor were calculated from two reflection coefficients of capacitors having different inner diameters with the same outer diameters.¹⁵

3. Results and discussion

The variation of the film thickness with the induced sputtering power and the growth temperature is illustrated in Fig. 1(a). Thickness of the film linearly increased with increasing the

Fig. 1. (a) Variation of the film thickness with the induced sputtering power and the growth temperature and (b) a cross-sectional TEM bright field image of the thin film grown at 550 °C 1 h and RTA at 900 °C for 3 min.

induced power. The enhancement of the sputtering rate due to the increase of the induced power is responsible for the increase of the thickness of film. Film thickness decreased with the increase of the growth temperature. Mobility of the sputtered ions on the substrate increases with the increase of the substrate temperature resulting in the formation of the dense film. Therefore, the thickness of film is expected to decrease with increasing the growth temperature. Fig. 1(b) showed a cross-sectional TEM bright field image of the thin film grown on the poly-Si/SiO₂/Si substrate at 550 °C 1 h and RTA at 900 °C for 3 min. The thin film with the thickness of 230 nm was uniformly formed and the interface between the film and poly-Si substrate is relatively sharp. The inset shows the electron diffraction pattern taken from the thin film and it was identified as the [1-10] zone axis of the BaTi₅O₁₁ phase. Therefore, the homogeneous crystalline BaTi₅O₁₁ thin film was well developed on the poly-Si/SiO₂/Si substrate.

Fig. 2 shows the X-ray diffraction patterns of the BaTi₅O₁₁ thin films grown on the poly-Si/SiO₂/Si substrate at various conditions. For the film grown at 550 °C for 1 h and RTA at 800 °C for 3 min, peaks for the crystalline BaTi₅O₁₁ phase were not found. Therefore, the films deposited at 550 °C and RTA at 800 °C are considered to have the amorphous phase. However, when the RTA temperature at 900 °C, peaks for the crystalline BaTi₅O₁₁ phase were observed as shown in Fig. 2(b). Moreover, even though the film was grown at room temperature, the crystalline BaTi₅O₁₁ film formed when the post annealing is conducted at 900 °C (see Fig. 2(d)). Therefore, it is considered that the post annealing temperature is one of the most important factors for the formation of the crystalline BaTi₅O₁₁ film. In addition, the relative intensity of each peak of the BaTi₅O₁₁ film is the same as that of the peaks from the BaTi₅O₁₁ bulk ceramic. Therefore, the BaTi₅O₁₁ films grown on the poly-Si substrate do not have any preferred growth orientation.

Fig. 3(a) and (b) show SEM images of the surface of the $BaTi_5O_{11}$ films deposited at various temperatures and RTA at 900 °C for 3 min. The small grains with the average grain size of 70 nm were formed for the film grown at room tempera-

Fig. 2. X-ray diffraction patterns of the $BaTi_5O_{11}$ thin films grown at 550 °C for 1 h and RTA at (a) 800 °C; (b) 900 °C; (c) 1000 °C for 3 min; and (d) the $BaTi_5O_{11}$ thin film grown at room temperature and RTA at 900 °C for 3 min.

Fig. 3. SEM images of the surface of the $BaTi_5O_{11}$ films deposited at (a) room temperature and (b) 550 °C for 1 h and RTA at 900 °C for 3 min.

ture. According to the X-ray diffraction pattern, the crystalline $BaTi_5O_{11}$ phase already formed for the film grown at room temperature and RTA at 900 °C for 3 min. Therefore, the small grains shown in Fig. 3(a) could be $BaTi_5O_{11}$ grains. The grain size of the $BaTi_5O_{11}$ film increased with the increase of the growth temperature. For the film grown at 550 °C and RTA at 900 °C for 3 min, a homogeneous microstructure with an average grain size of 210 nm was developed.

The composition of the sputtering target was $BaTi_4O_9$ but a thin film with $BaTi_5O_{11}$ composition was grown on the poly-Si substrate. According to previous research, the $BaTi_5O_{11}$ was never produced by the solid-state method but formed only from the amorphous phase. Furthermore, when the alkoxide solution with the Ba:Ti ratio of 1:4 was fired at 700 °C, the $BaTi_5O_{11}$ phase existed as the low temperature phase of the $BaTi_4O_9$ and it transformed into the $BaTi_4O_9$ phase when the specimen was annealed above $1300 \ ^{\circ}C.^{12,14}$ On the other hand, the thin film deposited on the poly-Si substrate is an amorphous phase with the $BaO:4.0TiO_2$ composition. Moreover, the amorphous film is transformed to the crystalline $BaTi_5O_{11}$ film during the annealing at 900 °C. Therefore, the $BaTi_5O_{11}$ film found in this work is also considered to be a low temperature phase of the $BaTi_4O_9$.

Dielectric constant and dielectric loss of the BaTi₅O₁₁ film grown at various growth conditions and measured at 100 kHz are illustrated in Fig. 4. The ε_r of film grown at room temperature was low, approximately 29, compared to that of the bulk

Fig. 4. Dielectric constant and dissipation factor of the $BaTi_5O_{11}$ films grown at various growth temperatures and RTA at 900 °C for 3 min.

Fig. 5. Dielectric constant and dielectric loss measured at 1–6 GHz for the $BaTi_5O_{11}$ film grown at 550 °C and RTA at 900 °C for 3 min.

BaTi₅O₁₁ ceramic. As shown in Fig. 2(d), for the film grown at room temperature and subsequently RTA at 900 °C, peaks for the crystalline BaTi₅O₁₁ film existed but their intensities were very low, indicating that the amount of the crystalline phase is relatively small. Therefore, the low value of the ε_r could be attributed to the existence of the amorphous phase. The ε_r increased with the increase of the annealing temperature and it can be explained by the increase of the amount of crystalline BaTi₅O₁₁ phase. For the film grown at 550 °C, it was about 35. The ε_r of the bulk BaTi₅O₁₁ ceramic produced by alkoxide method is about 41.¹² Therefore, ε_r of the BaTi₅O₁₁ film is close to that of the bulk BaTi₅O₁₁ crystalline. The dissipation factor of all the films was less than 4.0%. The dielectric properties of the $BaTi_5O_{11}$ film were also measured at microwave frequency range as shown in Fig. 5. The ε_r measured at 1 GHz was about 34, which is similar to the ε_r measured at 100 kHz. The ε_r slightly decreased with the increase of the frequency and it was about 30 at 6 GHz. The dielectric loss of the specimen was low, about 0.025 at 1-6 GHz.

4. Conclusions

The thin film deposited on the poly-Si substrate had an amorphous phase even if the growth temperature was high, around 550 °C. The amorphous phase was crystallized when the amorphous film was annealed above 800 °C. The crystalline film has

the BaTi₅O₁₁ phase, even though the sputtering target has the BaTi₄O₉ phase. The homogeneous BaTi₅O₁₁ film with the average grain size of 210 nm was formed when it was deposited at 550 °C and RTA at 900 °C for 3 min. The ε_r of the BaTi₅O₁₁ film measured at 100 kHz was about 35, which is close to that of the bulk BaTi₅O₁₁ ceramics. The dissipation factors of all the films were smaller than 4.0%. The ε_r of 30–34 and the dielectric loss of 0.025 were obtained at 1–6 GHz for the BaTi₅O₁₁ film grown at 550 °C and RTA at 900 °C for 3 min. Therefore, the BaTi₅O₁₁ thin films might be used for the microwave thin film devices.

Acknowledgements

This work was supported by the Ministry of Science and Technology through the project of Nano-Technology and one of authors also acknowledges that this work was financially supported by the Ministry of Science and Technology through NRL project.

References

- Wakino, K., Minai, K. and Tamura, H., Microwave characteristics of (Zr, Sn)TiO₄ and BaO-PbO-Nd₂O₃-TiO₂ dielectric resonators. *J. Am. Ceram. Soc.*, 1984, **67**(4), 278–281.
- Wersing, W., In *Electronic Ceramics*, ed. B. C. H. Steele. Elsevier Science, New York, 1991 [Chapter 4, p. 69].
- Chu, Y. H., Lin, S. J., Liu, K. S. and Lin, I. N., Properties of Ba(Mg_{1/3}Ta_{2/3})O₃ thin films prepared by pulsed-laser deposition. *Jpn. J. Appl. Phys.*, 2003, 42, 7428–7431.

- Lee, B. D., Yoon, K. I., Kim, E. S. and Kim, T. H., Microwave dielectric properties of CaTiO₃ and MgTiO₃ thin films. *Jpn. J. Appl. Phys.*, 2003, 42, 6158–6161.
- Kim, Y. J., Oh, J. M., Kim, T. G. and Park, B. W., Effect of microstructures on the microwave dielectric properties of ZrTiO₄ thin films. *Appl. Phys. Lett.*, 2001, **78**, 2363–2365.
- 6. Statton, W. O., J. Chem. Phys., 1951, 19(1), 40.
- 7. Rase, D. E. and Roy, R., Phase equilibria in the system BaO-TiO₂. J. Am. Ceram. Soc., 1955, **38**(3), 102–113.
- Jonker, G. H. and Kwestroo, W., The ternary systems BaO-TiO₂-SnO₂ and BaO-TiO₂-ZrO₂. J. Am. Ceram. Soc., 1958, 41(10), 390– 394.
- Masse, D. J., Pucel, R. A., Ready, D. W., Maguire, E. A. and Hartwig, C. P., Proc. IEEE, 1971, 59(11), 1628.
- O'Bryan Jr., H. M., Thomson Jr., J. and Plourde, J. K., A new BaO-TiO₂ compound with temperature-stable high permittivity and low microwave loss. J. Am. Ceram. Soc., 1974, 57(10), 450–453.
- Tillmanns, E., Die Kristallstructur von BaTi₅O₁₁. Acta Crystallogr. Sect. B, 1969, **25**(Pt 8), 1444–1452.
- Ritter, J. J., Roth, R. S. and Blendell, J. E., Alkoxide precursor synthesis and characterization of phases in the barium-titanium oxide system. *J. Am. Ceram. Soc.*, 1986, **69**(2), 155–161.
- Javadpour, J. and Eror, N. G., Raman spectroscopy of higher titanate phases in the BaTiO₃-TiO₂ system. *J. Am. Ceram. Soc.*, 1988, **71**(4), 206–213.
- Lu, H. C., Burkhart, L. E. and Schrader, G. L., Sol-gel process for the preparation of Ba₂Ti₉O₂₀ and BaTi₅O₁₁. J. Am. Ceram. Soc., 1991, 74(5), 968–972.
- Ma, Z., Becker, A. J., Polakos, P., Huggins, H., Pastalan, J., Wu, H., Watts, K., Wong, Y. H. and Mankiewich, P., RF measurement technique for characterizing thin dielectric films. *IEEE Trans. Electron Devices*, 1998, 45(8), 1811–1816.